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INTRODUCTION 

Let A be a set of 2n points in general position in the Euclidean plane R2, and 
suppose n of the points are colored red and the remaining n are colored blue. A 
celebrated Putnam problem (see [6] )  asserts that there are n pairwise disjoint 
straight line segments matching the red points to the blue points. To show this, 
consider the set of all n! possible matchings and choose one, M ,  that minimizes the 
sum of lengths I(M) of its line segments. It is easy to show that these line segments 
cannot intersect. Indeed, if the two segments v, ,  b ,  and v2 , b, intersect, where v, ,  v2 
are two red points and b,, b, are two blue points, the matching M' obtained from M 
by replacing q b ,  and v ,b ,  by v,b2 and u2 b, satisfies I(M') < I(M), contradicting the 
choice of M .  Our first result in this paper is a generalization of this result to higher 
dimensions. 

THEOREM 1: Let A be a set of d . n points in general position in Rd, and let 
A = A, u A ,  u . . * u A, be. a partition of A into d pairwise disjoint sets, each con- 
sisting of n points. Then there are n pairwise disjoint (d - 1)-dimensional simplices, 
each containing precisely one vertex from each A i ,  1 I i I d. 

We prove this theorem in the next section. The proof is short but uses a non- 
elementary tool : the well-known Borsuk-Ulam theorem. 

Combining Theorem 1 with an old result of Erdos from extremal graph theory 
we obtain a corollary dealing with geometric hypergraphs. A geometric d-hypergraph 
is a pair G = (V, E), where V is a set of points called vertices, in general position in 
Rd, and E is a set of (closed) (d - 1)-dimensional simplices called edges, whose ver- 
tices are points of V .  If d = 2, G is called a geometric graph. It is well known (see [3], 
[ 5 ] )  that every geometric graph with n vertices and n + 1 edges contains two dis- 
joint edges, two nonintersecting edges, and this result is the best possible. The 
number of edges that guarantees 1 pairwise disjoint edges is not known for 1 > 2, 
although Perles [7] determined the exact number for the case that the set of vertices 
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V is the set of vertices of a convex polygon. The situation seems much more difficult 
for geometric d-hypergraphs, when d > 2. Even the number of edges that guarantees 
two disjoint simplices is not known in this case. Clearly this number is greater than 

(i I i) (simply-take all edges containing a given point) and is at most . In the (3 
final section we prove the following theorem, that implies that for every fixed d, 
I2 2, every geometric d-hypergraph on n vertices that contains no I pairwise nonin- 
tersecting edges has o(nd) edges. 

THEOREM 2: Every geometric d-hypergraph with n vertices and at least nd-‘l”d-l) 
edges contains 1 pairwise nonintersecting edges. 

It is worth noting that the following, much stronger conjecture seems plausible. 

CONJECTURE 1: For every I ,  d L 2 there exists a constant c = 41, d) such that 
every geometric d-hypergraph with n vertices and at least c . nd-’ edges contains 1 
pairwise nonintersecting edges. 

We do not know how to prove this conjecture, even for d = 2,1= 3. 

PROOF OF THEOREM 1 

We need the following lemma, sometimes called the “Ham-Sandwich theorem,” 
which is a well-known consequence of the Borsuk-Ulam theorem (see [l], 121). 

LEMMA 1 : Let pl, p 2 ,  . . , , pd be d continuous probability measures in Rd. Then 
there exists a hyperplane H in Rd that bisects each of the d measures, that is, 
pi(Hf) = p i (H- ) (=+)  for all 1 5 i 5 d, where H +  and H -  denote, respectively, the 
open positive side and the open negative side of H. 

Theorem 1 will be derived from the following lemma. 

LEMMA 2: Let A, A,, A,, . . . , A, be as in Theorem 1. Then there exists a hyper- 

(1) 

(Notice that if n is odd (1) implies that H contains precisely one point from each Ai .) 

Proof: Replace each point p s A by a ball of radius E centered in p, where E is 
small enough to guarantee that no hyperplane intersects more than d balls. Associ- 
ate each ball with a uniformly distributed measure of l/n. For 1 5 i I d and a 
(1ebesgue)-measurable subset T of Rd, define pi(T) as the total measure of balls cen- 
tered at point of Ai captured by T. Clearly pl, p2, . . . , pd are a continuous probabil- 
ity measure. By Lemma 1 there exists a hyperplane H in Rd such that p i (H+)  = 
pui(H-) = for all 1 2 i 5 d. If n is odd, this implies that H intersects at least one 
ball centered at a point of Ai .  However, H cannot intersect more than d balls alto- 
gether, and thus it intersects precisly one ball centered at a point of A i ,  and it must 
bisect these d balls. Hence, for odd n, H satisfies (1). If n is even, H intersects at most 
d balls, and by slightly rotating H we can divide the centers of these balls between 

plane H in Rd such that 

I H +  n Ai 1 = [n /2]  and I H - n Ai I = [n /2]  for all 1 5 i 5 d. 
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H +  and H -  as we wish, without changing the position of each other point of A with 
respect to H. One can easily check that this guarantees the existence of an H 
satisfying (1). 

We can now prove Theorem 1 by induction on n. For n = 1 the result is trivial. 
Assuming the result for all n’, n‘ < n, let A, A,, A,, . . . , A, be as in Theorem 1 and 
let H be a hyperplane, guaranteed by Lemma 2, satisfying (1). Put Bi = H +  n Ai 
and Ci = H -  n A, for 1 I i I d,  B = Bi u .. . u B, and C = C, u .. . u C,. By 
applying the induction hypothesis to B, B,, .. ., B, and C, C,, . .., C,, we obtain two 
sets S1 and S, of [n/2] pairwise disjoint simplices each, where each simplex of S, 
contains precisly one vertex from each Bi and each simplex of S ,  contains precisely 
one vertex from each Ci . Clearly, all the simplices in S, lie in H +  and all those in S ,  
lie in H-. 

We thus obtained 2 . [n/2] pairwise nonintersecting simplices. These, together 
with the simplex spanned by Ai n H if n is odd, complete the induction and the 
proof of Theorem 1. 

PROOF OF THEOREM 2 

We need the following result of Erdos. 

LEMMA 3 [4]: Every d-uniform hypergraph with n vertices and at least nd-(””-’) 
edges contains a complete d-partite subhypergraph on d classes of I vertices each. 

Now suppose that G is a geometric d-hypergraph with n vertices and at 
least nd-(””-’) edges. By Lemma 3 there is a set A of I . d vertices of G, A = A ,  u 
. . . u A,, where I A, I = 1 for each i, and all the Id (d - l)-simplices consisting of one 

vertex from each Ai are edges of G. The assertion of Theorem 2 now follows from 
Theoreml. 
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