Disjoint Simplices and Geometric Hypergraphs

J. AKIYAMA ${ }^{a}$ AND N. ALON ${ }^{b}$
${ }^{a}$ Department of Mathematics
Tokai University
Hiratsuka 259-12, Japan
${ }^{b}$ Department of Mathematics
Tel Aviv University
69978 Tel Aviv, Israel
and
Bell Communications Research
Morristown, New Jersey 07960

INTRODUCTION

Let A be a set of $2 n$ points in general position in the Euclidean plane R^{2}, and suppose n of the points are colored red and the remaining n are colored blue. A celebrated Putnam problem (see [6]) asserts that there are n pairwise disjoint straight line segments matching the red points to the blue points. To show this, consider the set of all n ! possible matchings and choose one, M, that minimizes the sum of lengths $l(M)$ of its line segments. It is easy to show that these line segments cannot intersect. Indeed, if the two segments v_{1}, b_{1} and v_{2}, b_{2} intersect, where v_{1}, v_{2} are two red points and b_{1}, b_{2} are two blue points, the matching M^{\prime} obtained from M by replacing $v_{1} b_{1}$ and $v_{2} b_{2}$ by $v_{1} b_{2}$ and $v_{2} b_{1}$ satisfies $l\left(M^{\prime}\right)<l(M)$, contradicting the choice of M. Our first result in this paper is a generalization of this result to higher dimensions.

Theorem 1: Let A be a set of $d \cdot n$ points in general position in R^{d}, and let $A=A_{1} \cup A_{2} \cup \cdots \cup A_{d}$ be a partition of A into d pairwise disjoint sets, each consisting of n points. Then there are n pairwise disjoint ($d-1$)-dimensional simplices, each containing precisely one vertex from each $A_{i}, 1 \leq i \leq d$.

We prove this theorem in the next section. The proof is short but uses a nonelementary tool: the well-known Borsuk-Ulam theorem.

Combining Theorem 1 with an old result of Erdös from extremal graph theory we obtain a corollary dealing with geometric hypergraphs. A geometric d-hypergraph is a pair $G=(V, E)$, where V is a set of points called vertices, in general position in R^{d}, and E is a set of (closed) $(d-1)$-dimensional simplices called edges, whose vertices are points of V. If $d=2, G$ is called a geometric graph. It is well known (see [3], [5]) that every geometric graph with n vertices and $n+1$ edges contains two disjoint edges, two nonintersecting edges, and this result is the best possible. The number of edges that guarantees l pairwise disjoint edges is not known for $l>2$, although Perles [7] determined the exact number for the case that the set of vertices
V is the set of vertices of a convex polygon. The situation seems much more difficult for geometric d-hypergraphs, when $d>2$. Even the number of edges that guarantees two disjoint simplices is not known in this case. Clearly this number is greater than $\binom{n-1}{d-1}$ (simply take all edges containing a given point) and is at most $\binom{n}{d}$. In the final section we prove the following theorem, that implies that for every fixed d, $l \geq 2$, every geometric d-hypergraph on n vertices that contains no l pairwise nonintersecting edges has $o\left(n^{d}\right)$ edges.

Theorem 2: Every geometric d-hypergraph with n vertices and at least $n^{d-(1 / d d-1)}$ edges contains l pairwise nonintersecting edges.

It is worth noting that the following, much stronger conjecture seems plausible.
Conjecture 1: For every $l, d \geq 2$ there exists a constant $c=c(l, d)$ such that every geometric d-hypergraph with n vertices and at least $c \cdot n^{d-1}$ edges contains l pairwise nonintersecting edges.

We do not know how to prove this conjecture, even for $d=2, l=3$.

PROOF OF THEOREM 1

We need the following lemma, sometimes called the "Ham-Sandwich theorem," which is a well-known consequence of the Borsuk-Ulam theorem (see [1], [2]).

Lemma 1: Let $\mu_{1}, \mu_{2}, \ldots, \mu_{d}$ be d continuous probability measures in R^{d}. Then there exists a hyperplane H in R^{d} that bisects each of the d measures, that is, $\mu_{i}\left(H^{+}\right)=\mu_{i}\left(H^{-}\right)\left(=\frac{1}{2}\right)$ for all $1 \leq i \leq d$, where H^{+}and H^{-}denote, respectively, the open positive side and the open negative side of H.

Theorem 1 will be derived from the following lemma.
Lemma 2: Let $A, A_{1}, A_{2}, \ldots, A_{d}$ be as in Theorem 1. Then there exists a hyperplane H in R^{d} such that

$$
\begin{equation*}
\left|H^{+} \cap A_{i}\right|=[n / 2] \quad \text { and } \quad\left|H^{-} \cap A_{i}\right|=[n / 2] \quad \text { for all } 1 \leq i \leq d . \tag{1}
\end{equation*}
$$

(Notice that if n is odd (1) implies that H contains precisely one point from each A_{i}.)
Proof: Replace each point $p \in A$ by a ball of radius ε centered in p, where ε is small enough to guarantee that no hyperplane intersects more than d balls. Associate each ball with a uniformly distributed measure of $1 / n$. For $1 \leq i \leq d$ and a (lebesgue)-measurable subset T of R^{d}, define $\mu_{i}(T)$ as the total measure of balls centered at point of A_{i} captured by T. Clearly $\mu_{1}, \mu_{2}, \ldots, \mu_{d}$ are a continuous probability measure. By Lemma 1 there exists a hyperplane H in R^{d} such that $\mu_{i}\left(H^{+}\right)=$ $\mu_{i}\left(H^{-}\right)=\frac{1}{2}$ for all $1 \leq i \leq d$. If n is odd, this implies that H intersects at least one ball centered at a point of A_{i}. However, H cannot intersect more than d balls altogether, and thus it intersects precisly one ball centered at a point of \boldsymbol{A}_{i}, and it must bisect these d balls. Hence, for odd n, H satisfies (1). If n is even, H intersects at most d balls, and by slightly rotating H we can divide the centers of these balls between
H^{+}and H^{-}as we wish, without changing the position of each other point of A with respect to H. One can easily check that this guarantees the existence of an H satisfying (1).

We can now prove Theorem 1 by induction on n. For $n=1$ the result is trivial. Assuming the result for all $n^{\prime}, n^{\prime}<n$, let $A, A_{1}, A_{2}, \ldots, A_{d}$ be as in Theorem 1 and let H be a hyperplane, guaranteed by Lemma 2, satisfying (1). Put $B_{i}=H^{+} \cap A_{i}$ and $C_{i}=H^{-} \cap A_{i}$ for $1 \leq i \leq d, B=B_{i} \cup \cdots \cup B_{d}$ and $C=C_{1} \cup \cdots \cup C_{d}$. By applying the induction hypothesis to B, B_{1}, \ldots, B_{d} and C, C_{1}, \ldots, C_{d}, we obtain two sets S_{1} and S_{2} of [$n / 2$] pairwise disjoint simplices each, where each simplex of S_{1} contains precisly one vertex from each B_{i} and each simplex of S_{2} contains precisely one vertex from each C_{i}. Clearly, all the simplices in S_{1} lie in H^{+}and all those in S_{2} lie in H^{-}.

We thus obtained $2 \cdot[n / 2]$ pairwise nonintersecting simplices. These, together with the simplex spanned by $A_{i} \cap H$ if n is odd, complete the induction and the proof of Theorem 1.

PROOF OF THEOREM 2

We need the following result of Erdös.
Lemma 3 [4]: Every d-uniform hypergraph with n vertices and at least $n^{d-(1 / d x-1)}$ edges contains a complete d-partite subhypergraph on d classes of l vertices each.

Now suppose that G is a geometric d-hypergraph with n vertices and at least $n^{d-(1 / l u-1)}$ edges. By Lemma 3 there is a set A of $l \cdot d$ vertices of $G, A=A_{1} \cup$ $\cdots \cup A_{d}$, where $\left|A_{i}\right|=l$ for each i, and all the $l^{d}(d-1)$-simplices consisting of one vertex from each A_{i} are edges of G. The assertion of Theorem 2 now follows from Theorem 1.

REFERENCES

1. Borsuk, K. 1933. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundam. Math. 20: 177-190.
2. Dugundr, J. 1966. Topology. Allyn \& Bacon. New York.
3. Erdös, P. 1946. On sets of distances of n points. Am. Math. Mon. 53: 248-250.
4. Erdös, P. 1964. On extremal problems of graphs and generalized graphs. Israel J. Math. 2: 183-190.
5. Kupits, J. 1978. Masters Thesis. The Hebrew University of Jerusalem, Jerusalem, Israel.
6. Larson, L. C. 1983. Problem-solving Through Problems, 200-201. Springer-Verlag, New York.
7. Perles, M. A. Unpublished notes.
